Pengertian Lengkap Respirasi Aerob dan Anaerob

Respirasi adalah proses reduksi, oksidasi, dan dekomposisi, baik menggunakan oksigen maupun tidak dari senyawa organik kompleks menjadi senyawa lebih sederhana dan dalam proses tersebut dibebaskan sejumlah energi. Tenaga yang dibebaskan dalam respirasi berasal dari tenaga potensial kimia yang berupa ikatan kimia. Respirasi yang memerlukan oksigen disebut respirasi aerob dan respirasi yang tidak memerlukan oksigen disebut respirasi anaerob. Respirasi anaerob hanya dapat dilakukan oleh kelompok mikroorganisme tertentu (bakteri), sedangkan pada organisme tingkat tinggi belum diketahui kemampuannya untuk melakukan respirasi anaerob. Dengan demikian bila tidak tersedia oksigen, organisme tingkat tinggi tidak akan melakukan respirasi anaerob melainkan akan melakukan proses fermentasi. Sementara itu, terdapat respirasi sempurna yang hasil akhirnya berupa CO2 dan H2O dan respirasi tidak sempurna yang hasil akhirnya berupa senyawa organik.


Di manakah reaksi respirasi berlangsung? Sebagian reaksi respirasi berlangsung dalam mitokondria dan sebagian yang lain terjadi di sitoplasma. Mitokondria mempunyai membran ganda (luar dan dalam) serta ruangan intermembran (di antara membran luar dan dalam). Krista merupakan lipatan-lipatan dari membran dalam. Ruangan paling dalam berisi cairan seperti gel yang disebut matriks. Perhatikan Gambar 1. ATP paling banyak dihasilkan selama respirasi pada mitokondria sehingga mitokondria sering disebut mesin sel. Pada awal bab ini telah dijelaskan bahwa berdasarkan kebutuhan oksigen, terdapat dua jenis respirasi yaitu respirasi aerob dan respirasi anaerob. Bagaimanakah proses kimia pada masing-masing jenis respirasi? Marilah kita pelajari dalam uraian berikut.
1. Respirasi Aerob
Berdasarkan jalur reaksinya, respirasi aerob dibedakan menjadi dua yaitu respirasi aerob melalui jalur daur Krebs dan jalur oksidasi langsung atau jalur pentosa fosfat (Hexose Monophosphat Shunt = HMS). Apa perbedaan kedua jalur itu?
1.1. Respirasi Aerob Melalui Jalur Siklus Krebs
Respirasi aerob melalui daur Krebs memiliki empat tahap yaitu glikolisis, pembentukan asetil Co-A, daur Krebs, dan sistem transpor elektron.
Glikolisis terjadi dalam sitoplasma dan hasil akhirnya berupa senyawa asam piruvat. Selain menghasilkan 2 molekul asam piruvat, dalam glikolisis juga dihasilkan 2 molekul NADH2 dan 2 ATP jika tumbuhan dalam keadaan normal (melalui jalur ATP fosfofruktokinase) atau 3 ATP jika tumbuhan dalam keadaan stress atau sedang aktif tumbuh (melalui jalur pirofosfat fosfofruktokinase). ATP yang dihasilkan dalam reaksi glikolisis dibentuk melalui reaksi fosforilasi tingkat substrat. Bagaimanakah reaksi kimia yang terjadi dalam glikolisis? Coba pelajari skema proses glikolisis pada Gambar 1 berikut.
proses glikolisis glukosa asam piruvat
Gambar 1. Rangkaian proses glikolisis, diawali dengan glukosa dan diakhiri dengan piruvat.
Piruvat merupakan hasil akhir jalur glikolisis. Jika berlangsung respirasi aerobik, piruvat memasuki mitokondria dan segera mengalami proses lebih lanjut. Hasil akhir glikolisis sebagai berikut.
b) Pembentukan Asetil Co-A atau Reaksi Transisi
Reaksi pembentukan asetil Co-A sering disebut reaksi transisi karena menghubungkan glikolisis dengan daur Krebs. Pembentukan asetil Co-A pada organisme eukariotik berlangsung dalam matriks mitokondria, sedangkan pada organisme prokariotik berlangsung dalam sitosol. Pada reaksi ini, asam piruvat dikonversi menjadi gugus asetil (2C) yang bergabung dengan Coenzim A membentuk asetil Co-A dan melepaskan CO2  Reaksi ini terjadi 2 kali untuk setiap 1 molekul glukosa. Perhatikan reaksi pembentukan asetil Co-A berikut.
reaksi pembentukan asetil Co-A
c) Siklus Krebs
Siklus Krebs terjadi di dalam matriks mitokondria. Daur Krebs menghasilkan senyawa antara yang berfungsi sebagai penyedia kerangka karbon untuk sintesis senyawa lain. Selain sebagai penyedia kerangka karbon, daur Krebs juga menghasilkan 3 NADH2, 1 FADH2  dan 1 ATP untuk setiap satu asam piruvat. Senyawa NADH dan FADH2 selanjutnya akan dioksidasi dalam sistem transpor elektron untuk menghasilkan ATP. Oksidasi 1 NADH menghasilkan 3 ATP, sedangkan oksidasi 1 FADH2 menghasilkan 2 ATP. Berbeda dengan glikolisis, pembentukan ATP pada daur Krebs terjadi melalui reaksi fosforilasi oksidatif. Reaksi yang terjadi pada daur Krebs dapat Anda pelajari melalui Gambar 2 berikut.

siklus krebs asetil co-a
Gambar 2. Siklus Krebs
Adapun hasil akhir siklus Krebs ditampilkan sebagai berikut.

Output
Output
2 Asetil
4 CO2
2 ADP + 2 P
2 ATP
6 NAD+
6 NADH
2 FAD
2 FADH2

d) Sistem transpor elektron

Sistem transpor elektron merupakan suatu rantai pembawa elektron yang terdiri atas NAD, FAD, koenzim Q, dan sitokrom. Sistem transpor elektron terjadi dalam membran mitokondria. Sistem transpor elektron ini berfungsi untuk mengoksidasi senyawa NADH atau NADH2 dan FADH2 untuk menghasilkan ATP. Perhatikan skema sistem transpor elektron pada Gambar 3 berikut.
Sistem transpor elektron
Gambar 3. Sistem transpor elektron
Mengingat oksidasi NADH atau NADPH2 dan FADH2 terjadi di dalam membran mitokondria, sedangkan ada NADH yang dibentuk di sitoplasma (dalam proses glikolisis), maka untuk memasukkan setiap 1 NADH dari sitoplasma ke dalam mitokondria diperlukan 1 ATP. Keadaan ini akan mempengaruhi total hasil bersih respirasi aerob pada organisme eukariotik. Organisme prokariotik tidak memiliki sistem membran dalam sehingga tidak diperlukan ATP lagi untuk memasukkan NADH ke dalam mitokondria. Akibatnya total hasil bersih ATP yang dihasilkan respirasi aerob pada organisme prokariotik lebih tinggi daripada eukariotik. Energi (ATP) dalam sistem transpor elektron terbentuk melalui reaksi fosforilasi oksidatif. Energi yang dihasilkan oleh oksidasi 1 mol NADH atau NADPH2 dapat digunakan untuk membentuk 3 mol ATP. Reaksinya sebagai berikut.
NADH + H+ + 1/2 O2 + 3ADP + 3H3PO4 → NAD+ + 3ATP + 4H2O

Sementara itu, energi yang dihasilkan oleh oksidasi 1 mol FADH2 dapat menghasilkan 2 mol ATP. Berapakah jumlah total ATP yang dihasilkan selama proses respirasi aerob pada organisme eukariotik? Perhatikan Gambar 4 berikut.
Jumlah energi molekul glukosa organisme eukariotik
Gambar 4. Jumlah energi yang dihasilkan dari setiap molekul glukosa pada organisme eukariotik
Berdasarkan Gambar 4 tersebut tampak bahwa pada organisme eukariotik setiap molekul glukosa akan menghasilkan 36 ATP dalam respirasi. Hasil ini berbeda dengan respirasi pada organisme prokariotik. Telah diketahui bahwa oksidasi NADH atau NADPH2 dan FADH2 terjadi dalam membran mitokondria, namun ada NADH yang dibentuk di sitoplasma (dalam proses glikolisis). Pada organisme eukariotik, untuk memasukkan setiap 1 NADH dari sitoplasma ke dalam mitokondria diperlukan 1 ATP. Dengan demikian, 2 NADH dari glikolisis menghasilkan hasil bersih 4 ATP setelah dikurangi 2 ATP. Sementara itu, pada organisme prokariotik, karena tidak memiliki sistem membran dalam maka tidak diperlukan ATP lagi untuk memasukkan NADH ke dalam mitokondria sehingga 2 NADH menghasilkan 6 ATP. Akibatnya total hasil bersih ATP yang dihasilkan respirasi aerob pada organisme prokariotik, yaitu 38 ATP.

Bagaimanakah efisiensi respirasi ? Pembakaran glukosa secara sempurna menghasilkan CO2 dan H2O di luar tubuh makhluk hidup dan dihasilkan pula energi sebesar 680 kkal. Dari uraian di depan telah diketahui bahwa melalui respirasi 1 molekul glukosa menghasilkan 36 ATP. Sebuah ATP setara dengan 10 kkal energi sehingga perombakan glukosa dalam tubuh makhluk hidup melalui respirasi menghasilkan = 10 kkal x 36 = 360 kkal. Jika jumlah energi itu dibandingkan, akan diperoleh hasil efisiensi respirasi sebesar:

360 kkal
----------- x 100 % = 53%
680 kkal

Di Mana Tempat Terjadinya Reaksi Fosforilasi ?

Reaksi fosforilasi dalam glikolisis dan daur Krebs terjadi pada pengubahan senyawa berikut.
  1. 3 fosfogliseraldehid → 1,3- difosfogliserat
  2. Piruvat → asetil Co-A
  3. Isositrat → α-ketoglutarat
  4. α-ketoglutarat → suksinil Co-A
  5. Suksinat → fumarat
  6. Malat → oksaloasetat
1.2. Respirasi Aerob Melalui Oksidasi Langsung atau Jalur

Pentosa Fosfat (Hexose Monophosphat Shunt = HMS) Daur ini diawali dengan proses fosforilasi glukosa dengan fosfor yang berasal dari ATP sehingga terbentuk glukosa 6-fosfat. Selanjutnya, glukosa 6-fosfat dioksidasi dengan NADP terbentuk 6-fosfoglukonat. Tahap selanjutnya, 6-fosfoglukonat didekarboksilasi dan dioksidasi dengan NADP sehingga terbentuk ribulosa 5-fosfat. Ribulosa 5-fosfat melanjutkan siklus sehingga terbentuk kembali glukosa 6-fosfat. Perhatikan skema pada Gambar 5 berikut untuk membantu pemahaman Anda.
Jalur pentosa fosfat (HMS)
Gambar 5. Jalur pentosa fosfat (HMS)
Pada daur HMS, setiap keluar 1 CO2 akan dihasilkan 2 NADPH2. Selanjutnya, NADPH2 dioksidasi dalam sistem transpor elektron. Pada daur ini, dihasilkan senyawa antara berupa gula, sedangkan pada siklus Krebs berupa asam organik. Pada daur HMS dihasilkan gula ribulosa 6-fosfat (gula beratom C=5) yang merupakan gula penting untuk membentuk nukleotida. Nukleotida merupakan senyawa yang sangat penting karena berperan antara lain sebagai penyusun ATP dan DNA.

2. Proses Respirasi Anaerob

Respirasi anaerob terjadi bila tidak ada oksigen. Perlu diingat, bahwa dalam respirasi aerob oksigen berperan sebagai penerima elektron terakhir. Bila peran oksigen digantikan oleh zat lain, terjadilah respirasi anaerob. Organela-organela dan reaksi-reaksi yang terlibat dalam proses respirasi aerob sama dengan respirasi anaerob. Adapun zat lain yang dapat menggantikan peran oksigen antara lain NO3 dan SO4. Sejauh ini baru diketahui bahwa yang dapat menggunakan zat pengganti oksigen merupakan golongan mikroorganisme. Dengan demikian, organisme tingkat tinggi tidak dapat melakukan respirasi anaerob. Bagaimana organisme tingkat tinggi mengubah energi potensial kimia menjadi energi kinetik jika tidak ada oksigen? Apabila tidak tersedia oksigen, organisme tingkat tinggi mengubah energi potensial kimia menjadi energi kinetik melalui proses fermentasi.
artikel ini disalin lengkap dari: http://perpustakaancyber.blogspot.co.id/2012/11/respirasi-aerob-dan-respirasi-anaerob.html
halaman utama website: http://perpustakaancyber.blogspot.co.id/
jika mencari artikel yang lebih menarik lagi, kunjungi halaman utama website tersebut. Terimakasih!

No comments:

Not Indonesian?

Search This Blog