Pengertian Karbohidrat Lengkap

 
1.1.Pengertian Metabolisme
Metabolisme adalah segala proses reaksi kimia yang terjadi di dalam tubuh makhluk hidup, mulai makhluk hidup bersel satu hingga yang memiliki susunan tubuh kompleks seperti manusia. Dalam hal ini, makhluk hidup mendapat, mengubah dan memakai senyawa kimia dari sekitarnya untuk mempertahankan hidupnya.
Metabolisme meliputi proses sintesis (anabolisme) dan penguraian (katabolisme) senyawa atau komponen dalam sel hidup. Semua reaksi metabolisme dikatalis oleh enzim. Hal lain yang penting dalam metabolisme adalah peranannya dalam penawar racun atau detoksifikasi.

1.2.Pengertian Karbohidrat
Karbohidrat yaitu senyawa organik yang terdiri dari unsur karbon (C), hidrogen (H), dan oksigen (O). Terdiri atas unsur C, H, O dengan perbandingan 1 atom C, 2 atom H, 1 atom O. karbohidrat banyak terdapat pada tumbuhan dan binatang yang berperan struktural & metabolik. Sedangkan pada tumbuhan, untuk sintesis CO2 dan H2O akan menghasilkan amilum / selulosa melalui proses fotosintesis, sedangkan binatang tidak dapat menghasilkan karbohidrat sehingga tergantung tumbuhan. Karbohidrat merupakan sumber energi dan cadangan energi yang diproses melalui proses metabolisme.
Banyak sekali makanan yang kita makan sehari-hari adalah sumber karbohidrat seperti nasi, singkong, umbi-umbian, gandum, sagu, jagung, kentang, dan beberapa buah-buahan lainnya.
Rumus umum karbohidrat yaitu (CH2O)n, sedangkan yang paling banyak kita kenal yaitu glukosa dengan rumus C6H12O6, sukrosa dengan rumus C12H22O11, selulosa dengan  rumus (C6H10O5)n.
                Fungsi Karbohidrat
Ada banyak fungsi dari karbohidrat dalam penerapannya di industri pangan, farmasi maupun dalam kehidupan manusia sehari-hari. Di antara fungsi dan kegunaan itu ialah sebagai berikut :
a. Sebagai sumber kalori atau energi
b. Sebagai bahan pemanis dan pengawet
c. Sebagai bahan pengisi dan pembentuk
d. Sebagai bahan penstabil
e. Sebagai sumber flavor (karamel)
f. Sebagai sumber serat
            Klasifikasi Karbohidrat
Karbohidrat dapat dikelompokkan menurut jumlah unit gula, ukuran dari rantai karbon, lokasi gugus karbonil (-C=O), serta stereokimia. Berdasarkan jumlah unit gula dalam rantai, karbohidrat digolongkan menjadi 4 golongan utama yaitu:
1.       Monosakarida : terdiri atas 3-6 atom C dan zat ini tidak dapat lagi dihidrolisis oleh larutan asam dalam air menjadi karbohidrat yang lebih sederhana. Monosakarida yang paling sederhana ialah gliseraldehida dan dihidroksiaseton. Sedangkan monosakarida yang penting bagi tubuh adalah glukosa, fruktosa, dan galaktosa.
2.      Disakarida : senyawanya terbentuk dari 2 molekul monosakarida yg sejenis ataupun berbeda. Disakarida dapat dihidrolisis oleh larutan asam dalam air sehingga terurai menjadi 2 molekul monosakarida. Contoh dari disakarida adalah maltosa (glukosa+glukosa), laktosa (glukosa+galaktosa), dan sukrosa (glukosa+fruktosa).
3.      Oligosakarida : senyawa yang terdiri dari gabungan 3 – 10 monosakarida. Misalnya trisakarida dan tetrasakarida.
4.      Polisakarida : senyawa yang terdiri dari gabungan lebih dari 10 molekul- molekul  monosakarida, senyawa ini bisa dihidrolisis menjadi banyak molekul monosakarida. Polisakarida merupakan jenis karbohidrat yang mempunyai struktur  rantai lurus maupun bercabang. Misanya amilum, glikogen, dekstrin, dan selulosa.

1.3.Metabolisme Karbohidrat
Metabolisme mengakar pada kata “metabole” dari bahasa Yunani yang berarti berubah. Dalam dunia ilmu pengetahuan, secara sederhana metabolisme diartikan sebagai proses kimiawi yang berlangsung di dalam tubuh makhluk hidup yang bertujuan untuk menghasilkan energi. Proses metabolisme karbohidrat secara garis besar terdiri dari dua cakupan yakni reaksi pemecahan atau katabolisme dan reaksi pembentukan atau anabolisme. Pada proses pembentukan, salah satu unsur yang harus terpenuhi adalah energi. Energi ini dihasilkan dari proses katabolisme.
Lintasan metabolisme dapat digolongkan menjadi 3 kategori:
1. Lintasan anabolik (penyatuan/pembentukan)
      Ini merupakan lintasan yang digunakan pada sintesis senyawa pembentuk struktur dan mesin tubuh. Salah satu contoh dari kategori ini adalah sintesis protein.
2. Lintasan katabolik (pemecahan)
      Lintasan ini meliputi berbagai proses oksidasi yang melepaskan energi bebas, biasanya dalam bentuk fosfat energi tinggi atau unsur ekuivalen pereduksi, seperti rantai respirasi dan fosforilasi oksidatif.
3. Lintasan amfibolik (persimpangan)
      Lintasan ini memiliki lebih dari satu fungsi dan terdapat pada persimpangan metabolisme sehingga bekerja sebagai penghubung antara lintasan anabolik dan lintasan katabolik. Contoh dari lintasan ini adalah siklus asam sitrat.


Metabolisme karbohidrat pada manusia terutama :
•     Glikolisis, yaitu oksidasi glukosa atau glikogen menjadi piruvat dan asam laktat melalui Embden-Meyerhof  Pathway (EMP).
•     Glikogenesis, yaitu sintesis glikogen dari glukosa.
•     Glikogenolisis, yaitu pemecahan glikogen, pada hepar hasil akhir adalah glukosa, sedangkan di otot diubah menjadi piruvat dan asam laktat.
•     Siklus Krebs atau siklus asam trikarboksilat atau siklus asam sitrat adalah suatu jalan bersama dari oksidasi karbohidrat, lemak dan protein melalui asetil-Ko-A dan akan dioksidasikan secara sempurna menjadi CO2 & H2O.
•     Heksosa Monofosfat Shunt atau siklus pentosa fosfat adalah suatu jalan lain dari oksidasi glukosa selain EMP dan siklus Krebs.
•     Glukoneogenesis, yaitu pembentukan glukosa atau glikogen dari zat-zat bukan karbohidrat.
•     Oksidasi asam piruvat menjadi asetil Ko-A, yaitu lanjutan dari glikolisis serta menjadi penghubung antara glikolisis dan siklus Krebs.

2.      Macam-macam Proses Metabolisme Karbohidrat
1.      Glikolisis
Tahap ini merupakan awal terjadinya respirasi sel. Molekul glukosa akan masuk ke dalam sel melalui proses difusi. Agar dapat bereaksi, glukosa diberi energi aktivasi berupa satu ATP. Hal ini mengakibatkan glukosa dalam keadaan terfosforilasi menjadi glukosa-6-fosfat yang dibantu oleh enzim heksokinase. Secara singkat, glukosa-6-fosfat dipecah menjadi 2 buah molekul gliseraldehid-3-fosfat (PGAL) dengan bantuan satu ATP dan enzim fosfoheksokinase. Proses selanjutnya merupakan proses eksergonik. Hasilnya adalah 4 molekul ATP dan hasil akhir berupa 2 molekul asam piruvat (C3). Secara lengkap, proses glikolisis yang terjadi sebagai berikut

§  Glikolisis merupakan proses pengubahan molekul sumber energi, yaitu glukosa yang mempunyai 6 atom C manjadi senyawa yang lebih sederhana, yaitu asam piruvat yang mempunyai 3 atom C.
§  Reaksi ini berlangsung di dalam sitosol (sitoplasma).
§  Reaksi glikolisis mempunyai sembilan tahapan reaksi yang dikatalisis oleh enzim tertentu,
§  Dari sembilan tahapan reaksi tersebut dapat dikelompokkan menjadi dua fase, yaitu fase investasi energi, yaitu dari tahap 1 sampai tahap 4, dan fase pembelanjaan energi, yaitu dari tahap 5 sampai tahap 9.
§  Pertama-tama, glukosa mendapat tambahan satu gugus fosfat dari satu molekul ATP, yang kemudian berubah menjadi ADP, membentuk glukosa 6-fosfat.
§  Setelah itu, glukosa 6-fosfat diubah oleh enzim menjadi isomernya, yaitu fruktosa 6-fosfat. Satu molekul ATP yang lain memberikan satu gugus fosfatnya kepada fruktosa 6-fosfat, yang membuat ATP tersebut menjadi ADP dan fruktosa 6-fosfat menjadi fruktosa 1,6-difosfat. Kemudian, fruktosa 1,6-difosfat dipecah menjadi dua senyawa yang saling isomer satu sama lain, yaitu dihidroksi aseton fosfat dan PGAL (fosfogliseraldehid atau gliseraldehid 3-fosfat).
§  Tahapan-tahapan reaksi diatas itulah yang disebut dengan fase investasi energi.
§  Selanjutnya, dihidroksi aseton fosfat dan PGAL masing-masing mengalami oksidasi dan mereduksi NAD+, sehingga terbentuk NADH, dan mengalami penambahan molekul fosfat anorganik (Pi) sehingga terbentuk 1,3-difosfogliserat.
§  Kemudian masing-masing 1,3-difosfogliserat melepaskan satu gugus fosfatnya dan berubah menjadi 3-fosfogliserat, dimana gugus fosfat yang dilepas oleh masing-masing 1,3-difosfogliserat dipindahkan ke dua molekul ADP dan membentuk dua molekul ATP.
§  Setelah itu, 3-fosfogliserat mengalami isomerisasi menjadi 2-fosfogliserat. Setelah menjadi 2-fosfogliserat, sebuah molekul air dari masing-masing 2-fosfogliserat dipisahkan, menghasilkan fosfoenolpiruvat.
§  Terakhir, masing-masing fosfoenolpiruvat melepaskan gugus fosfat terakhirnya, yang kemudian diterima oleh dua molekul ADP untuk membentuk ATP, dan berubah menjadi asam piruvat.
§  Setiap pemecahan 1 molekul glukosa pada reaksi glikolisis akan menghasilkan produk kotor berupa 2 molekul asam piruvat, 2 molekul NADH, 4 molekul ATP, dan 2 molekul air.
§  Akan tetapi, pada awal reaksi ini telah digunakan 2 molekul ATP, sehingga hasil bersih reaksi ini adalah 2 molekul asam piruvat (C3H4O3), 2 molekul NADH, 2 molekul ATP, dan 2 molekul air.

Walaupun empat molekul ATP dibentuk pada tahap glikolisis, namun hasil reaksi keseluruhan adalah dua molekul ATP. Ada dua molekul ATP yang harus diberikan pada fase awal glikolisis. Tahap glikolisis tidak memerlukan oksigen.

2.      Dekarboksilasi Oksidatif
Setiap asam piruvat yang dihasilkan kemudian akan diubah menjadi Asetil-KoA (koenzim-A). Asam piruvat ini akan mengalami dekarboksilasi sehingga gugus karboksil akan hilang sebagai CO2 dan akan berdifusi keluar sel. Dua gugus karbon yang tersisa kemudian akan mengalami oksidasi sehingga gugus hidrogen dikeluarkan dan ditangkap oleh akseptor elektron NAD+.


Gugus yang terbentuk, kemudian ditambahkan koenzim-A sehingga menjadi asetil-KoA. Hasil akhir dari proses dekarboksilasi oksidatif ini akan menghasilkan 2 asetil-KoA dan 2 molekul NADH. Pembentukan asetil-KoA memerlukan kehadiran vitamin B1. Berdasarkan hal tersebut, dapat diketahui betapa pentingnya vitamin B dalam tubuh hewan maupun tumbuhan.

3.      Siklus Krebs
Proses selanjutnya adalah daur asetil-KoA menjadi beberapa bentuk sehingga dihasilkan banyak akseptor elektron. Selain disebut sebagai daur asam sitrat, proses ini disebut juga daur Krebs. Hans A. Krebs adalah orang yang pertama kali mengamati dan menjelaskan fenomena ini pada tahun 1930. Setiap tahapan dalam daur asam sitrat dikatalis oleh enzim yang khusus. Berikut adalah tahapan yang terjadi dalam daur asam sitrat.



·         Asetil-KoA akan menyumbangkan gugus asetil pada oksaloasetat sehingga terbentuk asam sitrat. Koenzim A akan dikeluarkan dan digantikan dengan penambahan molekul air.
·         Perubahan formasi asam sitrat menjadi asam isositrat akan disertai pelepasan air.
·         Asam isositrat akan melepaskan satu gugus atom C dengan bantuan enzim asam isositrat dehidrogenase, membentuk asam α-ketoglutarat. NAD+ akan mendapatkan donor elektron dari hidrogen untuk membentuk NADH. Asam α-ketoglutarat selanjutnya diubah menjadi suksinil KoA.
·         Asam suksinat tiokinase membantu pelepasan gugus KoA dan ADP mendapatkan donor fosfat menjadi ATP. Akhirnya, suksinil-KoA berubah menjadi asam suksinat.
·         Asam suksinat dengan bantuan suksinat dehidrogenase akan berubah menjadi asam fumarat disertai pelepasan satu gugus elektron. Pada tahap ini, elektron akan ditangkap oleh akseptor FAD menjadi FADH2.
·         Asam Fumarat akan diubah menjadi asam malat dengan bantuan enzim fumarase.
·         Asam malat akan membentuk asam oksaloasetat dengan bantuan enzim asam malat dehidrogenase. NAD+ akan menerima sumbangan elektron dari tahap ini dan membentuk NADH.
·         Dengan terbentuknya asam oksaloasetat, siklus akan dapat dimulai lagi dengan sumbangan dua gugus karbon dari asetil KoA.

4.      Transfer Elektron
Selama tiga proses sebelumnya, dihasilkan beberapa reseptor elektron yang bermuatan akibat penambahan ion hidrogen. Reseptor-reseptor ini kemudian akan masuk ke transfer elektron untuk membentuk suatu molekul berenergi tinggi, yakni ATP. Reaksi ini berlangsung di dalam membran mitokondria. Reaksi ini berfungsi membentuk energi selama oksidasi yang dibantu oleh enzim pereduksi. Transfer elektron merupakan proses kompleks yang melibatkan NADH (Nicotinamide Adenine Dinucleotide), FAD (Flavin Adenine Dinucleotide), dan molekul-molekul lainnya. Dalam pembentukan ATP ini, ada akseptor elektron yang akan memfasilitasi pertukaran elektron dari satu sistem ke sistem lainnya.
·         Enzim dehidrogenase mengambil hidrogen dari zat yang akan diubah oleh enzim (substrat). Hidrogen mengalami ionisasi sebagai berikut : 2H → 2H+ + 2e (Elektron).
·         NADH dioksidasi menjadi NAD+ dengan memindahkan ion hidrogen kepada flavoprotein (FP), flavin mononukleotida (FMN), atau FAD yang bertindak sebagai pembawa ion hidrogen. Dari flavoprotein atau FAD, setiap proton atau hidrogen dikeluarkan ke matriks sitoplasma untuk membentuk molekul H2O.
·         Elektron akan berpindah dari ubiquinon ke protein yang mengandung besi dan sulfur (FeSa dan FeSb) → sitokrom b → koenzim quinon → sitokrom b2 sitokrom o → sitokrom c → sitokrom a → sitokrom a3, dan terakhir diterima oleh molekul oksigen sehingga terbentuk H2O. Perhatikan gambar.

Di dalam rantai pernapasan, 3 molekul air (H2O) dihasilkan melalui NADH dan 1 molekul H2O dihasilkan melalui FAD. Satu mol H2O yang melalui NADH setara dengan 3 ATP dan 1 molekul air yang melalui FAD setara dengan 2 ATP.
Walaupun ATP total yang tertera pada Tabel 1 adalah 38 ATP, jumlah total yang dihasilkan pada proses respirasi adalah 36 ATP. Hal tersebut disebabkan 2 ATP digunakan oleh elektron untuk masuk ke mitokondria.
No
Proses
Akseptor
ATP

1.
Glikolisis → 2 asam piruvat
2 NADH
2 ATP

2.
Siklus Krebs




2 asam piruvat → 2 asetil KoA + 2CO2
2 NADH
2ATP


2 asetil KoA → 4CO2
6 NADH


3.
Rantai transfer elektron
10NADH + 502 → 10NAD+ + 10H2O
2 FADH2 + O2 → 2 FAD + 2H2O

30 ATP 
4 ATP
34 ATP

5.      Glikogenesis
Glikogenesis adalah lintasan metabolisme yang mengkonversi glukosa menjadi glikogen untuk disimpan di dalam hati.
Lintasan diaktivasi di dalam hati, oleh hormon insulin sebagai respon terhadap rasio gula darah yang meningkat, misalnya karena kandungan karbohidrat setelah makan; atau teraktivasi pada akhir siklus Cori. Penyimpangan atau kelainan metabolisme pada lintasan ini disebut glikogenosis.
Proses glikogenesis adalah sebagai berikut :
·         Glukosa mengalami fosforilasi menjadi glukosa 6-fosfat (reaksi yang lazim terjadi juga pada lintasan glikolisis). Di otot reaksi ini dikatalisir oleh heksokinase sedangkan di hati oleh glukokinase.
·         Glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam reaksi dengan bantuan katalisator enzim fosfoglukomutase. Enzim itu sendiri akan mengalami fosforilasi dan gugus fosfo akan mengambil bagian di dalam reaksi reversible yang intermediatnya adalah glukosa 1,6-bifosfat.

Enz-P + Glukosa 1-fosfat↔Enz + Glukosa 1,6-bifosfat↔Enz-P + Glukosa 6- fosfat
·         Selanjutnya glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDPGlc). Reaksi ini dikatalisir oleh enzim UDPGlc pirofosforilase.

UDPGlc + PPi↔UTP + Glukosa 1-fosfat
·         Hidrolisis pirofosfat inorganic berikutnya oleh enzim pirofosfatase inorganik akan menarik reaksi kearah kanan persamaan reaksi.
·         Atom C1 pada glukosa yang diaktifkan oleh UDPGlc membentuk ikatan glikosidik dengan atom C4 pada residu glukosa terminal glikogen, sehingga membebaskan uridin difosfat. Reaksi ini dikatalisir oleh enzim glikogen sintase. Molekul glikogen yang sudah ada sebelumnya (disebut glikogen primer) harus ada untuk memulai reaksi ini. Glikogen primer selanjutnya dapat terbentuk pada primer protein yang dikenal sebagai glikogenin.


artikel ini disalin lengkap dari: http://ellylovegod.heck.in/metabolisme-dalam-sel.xhtml
halaman utama website: http://ellylovegod.heck.in/
jika mencari artikel yang lebih menarik lagi, kunjungi halaman utama website tersebut. Terimakasih!

No comments:

Not Indonesian?

Search This Blog