Perjalanan Jagat Raya

Sejarah Bumi berkaitan dengan perkembangan planet Bumi sejak terbentuk sampai sekarang. Hampir semua cabang ilmu alam telah berkontribusi pada pemahaman peristiwa-peristiwa utama di Bumi yang sudah lampau. Usia Bumi ditaksir sepertiganya usia alam semesta. Sejumlah perubahan biologis dan geologis besar telah terjadi sepanjang rentang waktu tersebut.


Bumi terbentuk sekitar 4,54 miliar (4,54×109) tahun yang lalu melalui akresi dari nebula matahari. Pelepasan gas vulkanik diduga menciptakan atmosfer tua yang nyaris tidak beroksigen dan beracun bagi manusia dan sebagian besar makhluk hidup masa kini. Sebagian besar permukaan Bumi meleleh karena vulkanisme ekstrem dan sering bertabrakan dengan benda angkasa lain. Sebuah tabrakan besar diduga menyebabkan kemiringan sumbu Bumi dan menghasilkan Bulan. Seiring waktu, Bumi mendingin dan membentuk kerak padat dan memungkinkan cairan tercipta di permukaannya. Bentuk kehidupan pertama muncul antara 2,8 dan 2,5 miliar tahun yang lalu. Kehidupan fotosintesis muncul sekitar 2 miliar tahun yang lalu, nan memperkaya oksigen di atmosfer. Sebagian besar makhluk hidup masih berukuran kecil dan mikroskopis, sampai akhirnya makhluk hidup multiseluler kompleks mulai lahir sekitar 580 juta tahun yang lalu. Pada periode Kambrium, Bumi mengalami diversifikasi filum besar-besaran yang sangat cepat.
Perubahan biologis dan geologis terus terjadi di planet ini sejak terbentuk. Organisme terus berevolusi, berubah menjadi bentuk baru atau punah seiring perubahan Bumi. Proses tektonik lempeng memainkan peran penting dalam pembentukan lautan dan benua di Bumi, termasuk kehidupan di dalamnya. Biosfer memiliki dampak besar terhadap atmosfer dan kondisi abiotik lainnya di planet ini, seperti pembentukan lapisan ozon, proliferasi oksigen, dan penciptaan tanah.

Sejarah Bumi diurutkan secara kronologis dalam tabel skala waktu geologi, yang dibagi menjadi beberapa interval sesuai dengan analisis stratigrafi.Skala waktu yang lengkap dapat dilihat di artikel utama. Keempat garis waktu di bawah ini menunjukkan skala waktu geologi. Garis waktu yang pertama menunjukkan keseluruhan waktu dari masa terbentuknya Bumi sampai waktu sekarang. Skala waktu ini memampatkan eon terbaru. Skala waktu kedua menunjukkan eon terbaru dengan skala yang diperluas. Namun skala waktu kedua ini juga masih memampatkan era terbaru, yang dapat dilihat di skala ketiga. Karena Kuarter merupakan periode yang sangat singkat dengan jangka waktu yang pendek, sehingga diperluas lagi di skala waktu keempat.
Skala waktu kedua, ketiga, dan keempat merupakan subbagian dari skala waktu sebelumnya yang ditunjukkan oleh tanda bintang. Alasan lain untuk memperluas skala keempat adalah, Holosen (jangka waktu) terakhir terlalu kecil untuk dapat ditampilkan dengan jelas pada skala waktu ketiga di sebelah kanan.

Siderium Riasium Orosirium Staterium Kalimium Ektasium Stenium Tonium Kriogenium Ediakarium Eoarkean Paleoarkean Mesoarkean Neoarkean Paleoproterozoikum Mesoproterozoikum Neoproterozoikum Paleozoikum Mesozoikum Kenozoikum Hadean Arkean Proterozoikum Fanerozoikum Prakambrium
Kambrium Ordovisium Silur Devon (periode) Karbon (periode) Perm (periode) Trias Jura (periode) Kapur (periode) Paleogen Neogen Kuarter Paleozoikum Mesozoikum Kenozoikum Fanerozoikum
Paleosen Eosen Oligosen Miosen Pliosen Pleistosen Holosen Paleogen Neogen Kuarter Kenozoikum
Gelasium Kalabrium Pleistosen Pleistosen Pleistosen Holosen Kuarter
Juta tahun
Model standar tentang pembentukan Tata Surya adalah hipotesis nebula surya.Dalam model ini, Tata Surya terbentuk dari awan antarbintang—himpunan debu dan gas yang berputar—yang disebut nebula surya, terdiri dari hidrogen dan helium yang tercipta sesaat setelah peristiwa dentuman besar, 13,8  miliar tahun yang lalu serta elemen yang lebih berat yang terlontar dari supernova. Sekitar 4,5 miliar tahun, nebula tersebut mulai berkontraksi yang mungkin telah dipicu oleh gelombang kejut dari supernova yang berdekatan, Gelombang kejut juga telah membuat nebula tersebut berputar. Seiring makin cepatnya perputaran awan, maka momentum sudut, gravitasi, dan kelembaman meratakan awan tersebut menjadi bentuk cakram protoplanet yang tegak lurus terhadap sumbu rotasi. Adanya kekacauan yang disebabkan tumbukan serta pengaruh dari momentum sudut dari puing-puing besar menciptakan sarana yang memungkinkan protoplanet berukuran beberapa kilometer mulai terbentuk, yang mengorbit pusat nebula.


Pusat nebula, yang tidak banyak memiliki momentum sudut akhirnya cepat runtuh; tekanan dari runtuhan tersebut memanaskannya hingga memungkinkan terjadinya proses fusi nuklir antara hidrogen dan helium. Ketika kontraksi menjadi lebih besar, terbentuklah bintang T Tauri dan berkembang menjadi Matahari. Sementara itu, bagian luar dari gravitasi nebula menyebabkan materi mendingin di sekitar daerah yang padat gangguan serta partikel debu, dan sisa dari cakram protoplanet mulai memisah menjadi cincin. Melalui proses yang dikenal dengan akresi cepat, kepingan-kepingan debu dan puing-puing terus menerus mengumpul sehingga terbentuklah planet. Bumi terbentuk dengan cara ini sekitar 4,54 miliar tahun yang lalu (dengan ketidakpastian 1%)dan proses ini selesai dalam 10–20 juta tahun.Angin matahari dari bintang T Tauri yang baru terbentuk membersihkan sebagian besar materi di dalam cakram yang tidak tergabung dalam objek yang besar. Proses yang sama terjadi pada hampir semua bintang yang baru terbentuk di alam semesta yang menghasilkan cakram akresi, beberapa di antaranya menghasilkan planet ekstrasolar.[12]
Bumi baru terus bertumbuh sampai suhu interiornya cukup panas untuk melelehkan logam siderofil. Dengan massa jenis yang lebih tinggi dari silikat, akhirnya logam ini tenggelam. Peristiwa yang disebut katastrofe besi tersebut mengakibatkan pemisahan mantel primitif dengan inti metalik. Proses ini terjadi 10 juta tahun setelah Bumi mulai terbentuk, dan menghasilkan struktur Bumi yang berlapis-lapis dan mengakibatkan terbentuknya medan magnet.[13] J. A. Jacobs[14] merupakan orang pertama yang menunjukkan bahwa inti dalam—bagian dalam yang padat berbeda dari inti luar yang padat—membeku dan mengembang keluar inti luar yang cair dikarenakan bagian dalam bumi yang makin mendingin (sekitar 100° C per miliar tahun[15]). Ekstrapolasi dari pengamatan ini memperkirakan bahwa inti terbentuk pada masa 2–4 miliar tahun yang lalu. Jika ini benar maka berarti bahwa inti bumi bukanlah fitur primordial yang berasal selama pembentukan planet.
Eon pertama dalam sejarah Bumi, Hadean, dimulai saat proses pembentukan Bumi dan diikuti oleh eon Arkean pada 3,8 miliar tahun yang lalu.[2]:145 Batu tertua yang ditemukan di Bumi berumur sekitar 4 miliar tahun, dan serpihan kristal zirkon di dalam batu tertua yang ditemukan berumur sekitar 4,4 miliar tahun,[16][17][18] tak lama setelah pembentukan kerak Bumi dan Bumi itu sendiri. Menurut hipotesis tubrukan besar, pembentukan Bulan terjadi tidak lama setelah terbentuknya kerak Bumi, saat Bumi muda tertabrak oleh protoplanet yang berukuran lebih kecil, sehingga melontarkan mantel dan kerak Bumi ke luar angkasa dan membentuk Bulan.[19][20][21]
Dari jumlah kawah yang terdapat di benda langit lain, disimpulkan bahwa periode tumbukan meteorit yang intens, yang disebut dengan Pengeboman Berat Akhir dimulai sekitar 4,1–3,8  miliar tahun yang lalu pada akhir Hadean.[22] Selain itu, banyak terdapat letusan gunung berapi disebabkan oleh perpindahan panas serta gradien panas bumi.[23] Meski demikian, kristal zirkon detrital berumur 4,4 miliar tahun menunjukkan bukti bahwa kristal tersebut telah mengalami kontak dengan air yang berada dalam kondisi cair. Hal ini menunjukkan bahwa Bumi telah memiliki samudra atau laut pada saat itu.[16]
Pada awal Arkean, suhu Bumi sudah cukup dingin. Bentuk kehidupan masa kini tidak dapat hidup di atmosfer Arkean yang miskin oksigen serta memiliki lapisan ozon yang tipis. Namun, diyakini bahwa kehidupan purba mulai berkembang pada awal Arkean, dengan ditemukannya fosil berumur sekitar 5,3 miliar tahun.[24] Beberapa ilmuwan bahkan berspekulasi bahwa kehidupan bisa dimulai sejak masa Hadean awal, sekitar 4,4 miliar tahun yang lalu.
Bulan yang merupakan satu-satunya satelit alami Bumi, berukuran relatif lebih besar terhadap ukuran planet yang diorbitnya jika dibandingkan dengan satelit lain di Tata Surya.[nb 1] Selama program Apollo, bebatuan dari permukaan Bulan dibawa ke Bumi. Penanggalan radiometrik dari bebatuan ini telah menunjukkan bahwa Bulan berusia 4,53 ± .01 miliar tahun,[26] setidaknya 30 juta tahun setelah terbentuknya Tata Surya.[27] Bukti terbaru menunjukkan Bulan terbentuk pada masa yang lebih baru, sekitar 4,48 ± 0.02 miliar tahun yang lalu atau 70–110 juta tahun setelah terbentuknya Tata Surya.


Teori pembentukan Bulan harus dapat menjelaskan beberapa fakta berikut.
  • Pertama, Bulan memiliki densitas yang rendah (3,3 kali dibanding air, sementara bumi 5,5 kali dibanding air[29]) dan inti logam yang kecil.
  • Kedua, Bulan hampir tidak mengandung air atau bahan yang mudah menguap lainnya.
  • Ketiga, Bumi dan Bulan memiliki jejak isotopik oksigen (kelimpahan relatif dari isotop oksigen) yang sama.
Dari teori-teori yang telah diajukan untuk menjelaskan fenomena ini, hanya satu yang diterima secara luas yakni hipotesis tubrukan besar yang mengatakan bahwa bulan terbentuk dari sebuah benda langit seukuran Mars menghantam bumi yang baru terbentuk.[1]:256[30][31]
Tabrakan ini memiliki tenaga 100 juta kali lebih besar dari tabrakan yang menyebabkan kepunahan dinosaurus. Tenaga ini cukup untuk menguapkan sebagian lapisan luar bumi dan menyatukan kedua bagian yang bertabrakan.[30][1]:256 Sebagian dari bahan mantel terlempar ke orbit di sekitar Bumi. Hipotesis tubrukan besar menduga bahwa Bulan kehabisan materi logam;[32] hal ini menjelaskan komposisinya yang abnormal.[33] Materi yang terlempar ke dalam orbit Bumi dapat berkumpul menjadi satu bagian dalam beberapa minggu, di bawah pengaruh gravitasinya sendiri; materi tersebut semakin lama akan memiliki bentuk yang bulat.
Mantel konveksi, proses yang mendorong lempeng tektonik saat ini, adalah hasil dari aliran panas dari dalam bumi ke permukaan bumi.[35]:2 Termasuk juga penciptaan lempeng tektonik di pegunungan di tengah laut. Lempeng ini dihancurkan oleh subduksi ke dalam mantel di zona subduksi. Pada awal eon Arkean (sekitar 3,0 miliar tahun yang lalu) mantel itu jauh lebih panas daripada sekarang, mungkin sekitar 1600° C,[36]:82 sehingga proses konveksi dalam mantel terjadi lebih cepat.


Kerak bumi mulai terbentuk ketika permukaan bumi mulai memadat, menghilangkan bekas-bekas pergeseran lempeng tektonik Hadean serta dampak dari tumbukan yang terjadi. Namun, diperkirakan kerak tersebut memiliki komposisi Basalt seperti Kerak samudera yang ada sekarang.[1]:258 Potongan kerak benua besar yang pertama, muncul pada akhir masa Hadean, sekitar 4 miliar tahun yang lalu. Bagian yang tersisa dari benua pertama yang kecil ini disebut kraton. Potongan-potongan yang terjadi pada akhir Hadean sampai awal Arkean membentuk inti lempengan yang sampai sekarang tumbuh menjadi benua.[37]
Batuan tertua di Bumi ditemukan di Laurentia, Kanada, yang berupa tonalit yang berumur sekitar 4 miliar tahun. Bebatuan ini menunjukkan jejak metamorfosis oleh suhu tinggi, juga biji-bijian sedimen yang telah terkikis oleh erosi selama terbawa oleh air, yang menunjukkan adanya sungai dan laut pada masa itu.[38]
Bumi biasanya diuraikan memiliki tiga atmosfer. Atmosfer pertama diperoleh dari nebula surya, terdiri dari unsur-unsur ringan (atmofil) dari nebula surya, sebagian besar merupakan hidrogen dan helium. Kombinasi dari angin matahari dan panas bumi akhirnya menghempaskan atmosfer ini, yang mengakibatkan habisnya atmosfer ini.[40] Setelah terjadinya tumbukan, Bumi yang berbentuk cair melepaskan gas volatil, dan gas-gas lainnya dikeluarkan oleh gunung berapi, membentuk atmosfer kedua yang kaya gas rumah kaca namun miskin oksigen.[1]:256 Akhirnya, atmosfer ketiga yang kaya oksigen muncul ketika bakteri mulai menghasilkan oksigen sekitar 2,8 miliar tahun yang lalu.

Dalam model awal pembentukan atmosfer dan laut, atmosfer kedua terbentuk karena pengeluaran gas volatil dari interior Bumi. Anggapan ini sekarang berubah, sebab volatil diperkirakan banyak dikeluarkan selama akresi dalam sebuah proses yang dikenal sebagai pengawagasan tubrukan. Anggapan ini memperkirakan lautan dan atmosfer sudah mulai terbentuk pada tahap pembetukan bumi.[42] Atmosfer yang terbentuk kemungkinan berisi uap air, karbon dioksida, nitrogen, dan sejumlah kecil gas-gas lainnya.[43]
Planetisimal dalam jarak 1 satuan astronomi (AU), jarak Bumi dari Matahari, kemungkinan tidak berpengaruh terhadap pengadaan air di Bumi, karena nebula surya terlalu panas untuk mendukung pembentukan es dan hidrasi bebatuan oleh uap air memerlukan waktu yang terlalu lama.[42][44] Air kemungkinan besar berasal dari meteorit yang ada di sabuk luar asteroid serta beberapa embrio planet besar yang jaraknya lebih dari 2,5 AU.[42][45] Komet mungkin juga berkontribusi terhadap pengadaan air di Bumi. Meskipun sebagian besar komet saat ini mengorbit Matahari pada jarak yang jauh, namun simulasi komputer menunjukkan bahwa pada awalnya komet-komet tersebut mengorbit Matahari pada jarak yang lebih dekat.[38]:130-132
Seiring Bumi mulai mendingin, awan-awan mulai terbentuk. Akhirnya hujan menciptakan lautan. Bukti terbaru menunjukkan lautan mungkin telah terbentuk 4,4 miliar tahun yang lalu.[16] Pada awal eon Arkean, lautan sudah menutupi Bumi. Formasi awal ini sulit dijelaskan karena ada masalah yang dikenal sebagai paradoks Matahari muda yang redup. Bintang diketahui akan bertambah terang dengan bertambahnya usia, dan pada saat pembentukannya, Matahari hanya memancarkan 70% dari daya saat ini. Banyak model memprediksi bahwa Bumi pernah tertutup oleh es.[46][42] Solusi yang memungkinkan adalah, bahwa ada banyak karbon dioksida dan metana yang menghasilkan efek rumah kaca. Karbon dioksida mungkin dihasilkan oleh gunung berapi, dan metana dihasilkan oleh mikroba. Gas rumah kaca lainnya, yaitu amonia mungkin juga dikeluarkan oleh gunung berapi, namun dihancurkan secara cepat oleh radiasi ultraviolet.Salah satu manfaat terbentuknya atmosfer dan lautan adalah tersedianya kondisi yang dapat menunjang adanya kehidupan. Ada banyak model yang menggambarkan asal mula kehidupan, namun masih sedikit konsensus tentang bagaimana kehidupan muncul dari bahan kimia. Percobaan yang dibuat di laboratorium masih belum dapat mengungkap tentang hal ini.[47][48]
Tahap awal munculnya kehidupan kemungkinan dipicu dengan adanya reaksi kimia yang menghasilkan senyawa organik sederhana, termasuk nukleobasa serta asam amino yang merupakan meteri penyusun kehidupan. Sebuah percobaan yang dilakukan oleh Stanley Miller dan Harold Urey pada tahun 1953 menunjukkan bahwa molekul tersebut bisa terbentuk dalam lingkungan air, metana, amonia dan hidrogen dengan bantuan percikan bunga api, untuk meniru efek petir.[49] Meskipun komposisi atmosfer mungkin berbeda dari komposisi yang digunakan oleh Miller dan Urey, percobaan lebih lanjut dilakukan dengan komposisi yang lebih mendekati kondisi sesungguhnya, juga berhasil mensintesis molekul organik.[50] Simulasi komputer terbaru menunjukkan bahwa molekul organik di luar bumi dapat terbentuk dalam piringan protoplanet sebelum pembentukan bumi.[51]
Tahap berikutnya yang lebih kompleks bisa saja dicapai dari setidaknya tiga titik awal:[52]
  • Replikasi diri, kemampuan organisme untuk menghasilkan keturunan yang sangat mirip dengan dirinya sendiri.
  • Metabolisme, kemampuan untuk memberi makan dan memperbaiki diri sendiri.
  • Membran sel eksternal, yang memungkinkan makanan masuk dan limbah hasil pencernaan terbuang.
Anggota paling sederhana dari tiga domain modern pun menggunakan DNA untuk merekam informasi genetika dan susunan RNA yang kompleks serta molekul protein untuk "membaca" petunjuk tersebut dan menggunakannya untuk pertumbuhan, pemeliharaan dan replikasi diri.
Penemuan yang menjelaskan bahwa jenis molekul RNA yang disebut ribozim dapat mengkatalisis baik replikasi sendiri maupun pembuatan protein membuka hipotesis baru yang mengatakan bahwa bentuk kehidupan awal sepenuhnya didasarkan pada RNA.[53] Mereka bisa membentuk dunia dunia RNA di mana ada individu tetapi tidak ada spesies, seperti mutasi dan transfer gen horizontal yang diartikan bahwa keturunan dalam setiap generasi cenderung memiliki genom yang berbeda dari induknya.[54] RNA kemudian diganti oleh DNA, yang lebih stabil sehingga dapat mempertahankan genom untuk waktu yang lebih lama.[55] Ribozim tetap menjadi komponen utama ribosom, yang merupakan "pabrik protein" sel modern.


Meskipun, molekul RNA yang dapat mereplikasi diri telah dapat diproduksi di laboratorium,[57] namun tetap ada keraguan tentang apakah kemungkinan mensintesis RNA non-biologis.[58][59][60] Ribozim awal kemungkinan terbentuk dari asam nukleat sederhana seperti PNA, TNA atau GNA, yang akan digantikan kemudian oleh.[61][62] Replikator pra-RNA lainnya telah dikemukakan, termasuk kristal[63]:150 dan bahkan sistem kuantum.[64]
Pada tahun 2003 diusulkan bahwa presipitasi sulfida logam berpori akan membantu sintesis RNA pada suhu sekitar 100° C. Dalam hipotesis ini, membran lipid akan menjadi komponen sel besar terakhir yang muncul dan terbatas pada pori-pori sampai mereka melakukan protosel.[65]
Hipotesis lain yang bertahan cukup lama mengatakan bahwa kehidupan awal terdiri dari molekul protein. Asam amino, blok yang membangun protein mudah disintesis dalam kondisi prebiotik, seperti peptida kecil (polimer asam amino) yang membuat katalis yang baik.[66]:295–297 Serangkaian percobaan dimulai pada tahun 1997 menunjukkan bahwa asam amino dan peptida bisa terbentuk dengan adanya karbon monoksida dan hidrogen sulfida, dengan besi sulfida dan nikel sulfida sebagai katalis. Sebagian besar langkah tersebut membutuhkan suhu 100° C dan tekanan yang sedang, meskipun ada satu tahap yang memerlukan suhu 250° C dan tekanan yang setara dengan tekanan bebatuan pada kedalaman 7 kilometer. Oleh karena tempat yang memungkinkan terjadinya sintesis protein mandiri berada di dekat lubang hidrotermal.[67]
Kesulitan yang dihadapi dalam membuat skenario metabolisme pertama adalah menemukan cara bagi organisme tersebut untuk berkembang. Tanpa kemampuan untuk mereplikasi sebagai individu, agregat molekul akan memiliki "genom komposisi" (jumlah spesies molekular dalam agregat) sebagai sasaran seleksi alam. Namun, model percobaan terbaru menunjukkan bahwa sistem tersebut tidak dapat berkembang sebagai respon terhadap seleksi alam.Gelembung lipid berdinding ganda seperti yang membentuk membran sel luar dianggap sebagai langkah awal yang penting.[69] Percobaan yang mensimulasikan kondisi awal Bumi diketahui telah mampu membentuk lipid, dan secara spontan membentuk liposom—gelembung berdinding ganda—yang mampu memperbanyak diri.

Penampang Liposom
Meskipun tidak secara intrinsik membawa informasi seperti asam nukleat, namun liposom ini akan mengalami seleksi alam yang menentukan umur dan kemampuan reproduksi. Asam nukleat seperti RNA lebih mudah terbentuk di dalam liposom dari pada di luar liposom.
Beberapa tanah liat, terutama montmorilonit, memiliki sifat yang menjadikannya akselerator yang memungkinkan munculnya dunia RNA: mereka tumbuh dengan mereplikasi diri pola garis kristal mereka, menjadi bagian dari seleksi alam, dan dapat mengkatalisis pembentukan molekul RNA.[71] Meskipun ide ini belum menjadi konsensus ilmiah, namun banyak ilmuwan yang mendukung ide ini.[72]:150–158[63]
Penelitian pada tahun 2003 melaporkan bahwa montmorilonit juga bisa mempercepat konversi asam lemak ke dalam "gelembung", dan bahwa gelembung bisa membungkus RNA melekat pada tanah liat. Gelembung tersebut kemudian dapat tumbuh dengan menyerap lipid tambahan dan membelah. Pembentukan awal sel kemungkinan terjadi melalui proses yang serupa.[73]
Hipotesis serupa mengatakan replikasi diri tanah liat yang kaya zat besi sebagai nenek moyang nukleotida, lipid dan asam amino.Ilmuwan meyakini bahwa dari keanekaragaman protosel ini, hanya satu garis keturunan yang berhasil selamat. Bukti filogeni saat ini menunjukkan bahwa nenek moyang terakhir (LUCA) hidup pada awal eon arkean, yang diperkirakan 3,5 miliar tahun yang lalu atau sebelumnya.[75][76] LUCA merupakan nenek moyang dari semua kehidupan di bumi saat ini.


Diperkirakan LUCA merupakan sebuah Prokariota yang memiliki membran sel dan kemungkinan sebuah ribosom, tapi kurang memiliki inti sel atau ikatan membran organel seperti mitokondria atau kloroplas. Seperti semua sel modern, LUCA menggunakan DNA sebagai kode genetik, RNA untuk transfer informasi dan sintesis protein, dan enzim untuk mengkatalisis reaksi. Beberapa ilmuwan percaya bahwa bukan organisme tunggal yang menjadi nenek moyang terakhir kehidupan, melainkan ada populasi organisme yang bertukar gen melalui transfer gen horizontal
Eon Proterozoikum berlangsung dari 2,5 miliar hingga 542 juta tahun yang lalu.[2]:130 Dalam rentang waktu tersebut, kraton berkembang menjadi benua-benua dengan ukuran mutakhir. Perubahan atmosfer yang kaya oksigen juga merupakan perkembangan krusial. Kehidupan berkembang dari prokariota menjadi eukariota dan bentuk multiseluler. Pada Proterozoikum terjadi dua zaman es parah yang disebut bumi bola salju. Setelah Bumi Bola Salju terakhir usai sekitar 600 juta tahun lalu, evolusi kehidupan di Bumi terjadi secara cepat. Sekitar 580 tahun lalu, biota Ediakara menjadi pendahuluan bagi Ledakan Kambrium.
Sel-sel purba menyerap energi dan makanan dari lingkungan di sekitarnya. Mereka menggunakan fermentasi (pemecahan senyawa lebih kompleks menjadi senyawa kurang kompleks dengan sedikit energi) dan menggunakan energi yang dibebaskan untuk tumbuh dan berkembang biak. Fermentasi hanya dapat terjadi dalam lingkungan anaerobik (tanpa oksigen). Evolusi fotosintesis memungkinkan sel-sel untuk membuat makanannya sendiri.[77]:377
Sebagian besar kehidupan yang berada di permukaan Bumi bergantung secara langsung atau tak langsung pada fotosintesis. Bentuk yang paling umum, yaitu fotosintesis oksigen, mengubah karbon dioksida, air, dan cahaya matahari menjadi makanan. Dalam proses tersebut terjadi penangkapan energi cahaya Matahari ke dalam molekul kaya energi seperti ATP, yang kemudian menyediakan energi untuk menciptakan gula. Untuk menyuplai elektron dalam prosesnya, maka hidrogen dipisahkan dari air, sehingga oksigen dibuang.[78] Sejumlah organisme, seperti bakteri ungu dan bakteri belerang hijau, mengadakan fotosintesis tanpa oksigen yang menggunakan pengganti hidrogen dari air sebagai pendonor elektron; contohnya hidrogen sulfida, belerang, dan besi. Organisme macam itu hidup di lingkungan ekstrem seperti mata air panas dan lubang hidrotermal.[77]:379–382[79]
Bentuk anoksigenik yang lebih sederhana muncul sekitar 3,8 miliar tahun lalu, tak lama setelah munculnya kehidupan. Masa permulaan fotosintesis oksigenik lebih kontroversial; bukti memastikan kemunculannya sekitar 2,4 miliar tahun lalu, namun sejumlah peneliti menyatakan masa yang lebih jauh lagi sekitar 3,2 miliar tahun lalu.[78] Masa yang labih jauh "mungkin meningkatkan produktivitas global setidaknya dua atau tiga kali lipat."[80][81] Fosil stromatolit merupakan salah satu sisa-sisa makhluk hidup penghasil oksigen tertua di dunia.[80][81][39]
Pada awalnya, oksigen yang dilepas ke udara terikat dengan kapur, besi, dan mineral lainnya. Besi teroksidasi tampak sebagai lapisan merah dalam lapisan geologis yang disebut formasi besi terangkai yang terbentuk dalam kelimpahan selama periode Siderium (antara 2500 juta tahun lalu dan 2300 juta tahun lalu).[2]:133 Saat sebagian besar mineral teroksidasi, akhirnya oksigen mulai terakumulasi di atmosfer. Meskipun tiap sel hanya menghasilkan oksigen dalam jumlah kecil, kombinasi metabolisme dari banyak sel dalam waktu lama mengubah atmosfer Bumi menjadi seperti saat ini. Atmosfer tersebut merupakan atmosfer bumi ketiga.


Beberapa oksigen terstimulasi oleh radiasi ultraviolet sehingga membentuk ozon, yang berkumpul di lapisan dekat bagian atas atmosfer. Lapisan ozon menyerap jumlah radiasi ultraviolet signifikan yang memasuki atmosfer Bumi. Hal tersebut memungkinkan sel-sel untuk hidup di permukaan samudra dan kemudian di daratan: tanpa lapisan ozon, radiasi ultraviolet yang menghujani daratan dan lautan akan mengakibatkan mutasi tak terkendali pada sel-sel yang terekspos.
Fotosintesis juga memiliki peran besar. Oksigen bersifat racun; sebagian besar kehidupan awal di Bumi mati karena level oksigen meningkat dalam peristiwa yang dikenal sebagai bencana oksigen. Makhluk yang resistan bertahan hidup dan berkembang, dan beberapa darinya mengembangkan kemampuan pemanfaatan oksigen untuk peningkatan metabolisme dan memperoleh lebih banyak energi dari makanan yang sama.Evolusi alami menyebabkan Matahari semakin terang selama eon Arkean dan Proterozoikum; kecerahan Matahari bertambah sebanyak 6% setiap miliaran tahun.Akibatnya, Bumi mulai menerima kehangatan dari Matahari pada eon Proterozoikum. Meski demikian, Bumi tidak serta-merta menghangat. Sebaliknya, rekaman geologis mengindikasikan bahwa Bumi mendingin drastis selama awal Proterozoikum. Sisa-sisa zaman es yang ditemukan di Afrika Selatan terhitung berusia 2,2 miliar tahun, yang pada masa itu—berdasarkan bukti paleomagnetis—wilayah tersebut seharusnya terletak di dekat khatulistiwa. Maka dari itu, glasiasi tersebut—dikenal sebagai glasiasi Makganyene—pasti terjadi secara global. Sejumlah ilmuwan mendukung teori itu dan zaman es Proterozoikum berlangsung secara parah sehingga Bumi beku total dari kutub hingga khatulistiwa: hipotesis yang disebut Bumi Bola Salju.


Zaman es sekitar 2,3 miliar tahun lalu dapat menyebabkan peningkatan konsentrasi oksigen di atmosfer secara langsung, mengakibatkan penurunan metana (CH4) di atmosfer. Metana merupakan gas rumah kaca yang kuat, namun dengan kehadiran oksigen maka ia akan bereaksi untuk membentuk CO2, gas rumah kaca yang kurang efektif. Saat oksigen bebas tersedia di atmosfer, konsentrasi metana juga menurun drastis, cukup memungkinkan untuk menolak peningkatan hawa panas yang diberikan Matahari.

artikel ini disalin lengkap dari:http://id.wikipedia.org/wiki/Sejarah_Bumi
halaman utama website:http://id.wikipedia.org
jika mencari artikel yang lebih menarik lagi, kunjungi halaman utama website tersebut. Terimakasih!

No comments:

Not Indonesian?

Search This Blog